Biclustering of Gene Expression Data Based on Local Nearness
نویسندگان
چکیده
Résumé. L’analyse des données d’expression de génes dans les fragments d’ADN est un outil important utilisé dans la recherche genomique dont les objectifs principaux s’étendent de l’étude du caractére fonctionnel des génes spécifiques et leur participation dans les processus biologiques à la reconstruction de conditions des maladies et leur pronostique. Les données d’expression des génes sont arrangées dans les matrices où chaque géne corresponde à une ligne et chaque colonne représente une condition expérimentale spécifique. Les techniques de biclustering ont le but de trouver de sous-ensembles de génes qui montrent les modéles d’activité similaires sous un sous-ensemble des conditions. Notre approche consiste en un algorithme de biclustering basé sur la proximité locale. L’algorithme cherche biclusters dans une manière greedy, commençant avec biclusters qui contiennent deux génes et incluant autant de génes que possible dépendant d’un seuil de distance qui garantit la similarité de comportements des génes.
منابع مشابه
Application of Cardinality based GRASP to the Biclustering of Gene Expression Data
Biclustering algorithms perform simultaneous row and column clustering of a given data matrix. In gene expression dataset a bicluster is a subset of genes that exhibit similar expression patterns through a subset of conditions. Biclustering is a useful data mining technique for identifying local patterns from gene expression data. In this paper biclusters are identified in two steps. In the fir...
متن کاملBiFree: An Efficient Biclustering Technique for Gene Expression Data Using Two Layer Free Weighted Bipartite Graph Crossing Minimization
Conventional clustering technique for gene expression data provides a global view of the data. In the biological prospective, a local view is essential for better analysis of gene expression data with simultaneous grouping of genes and conditions. Several biclustering techniques have been proposed in the literature based on different problem formulation. Therefore, it is difficult to compare th...
متن کاملEnhanced Biclustering for Gene Expression Data
Microarray technology is a powerful method for monitoring the expression level of thousands of genes in parallel. Using this technology, the expression levels of genes are measured. Microarray data is represented in N × M matrix. Each row indicates genes and each column indicates condition. In Gene Expression data, standard clustering algorithms are called as global clustering. In global cluste...
متن کاملA comparative analysis of biclustering algorithms for gene expression data
The need to analyze high-dimension biological data is driving the development of new data mining methods. Biclustering algorithms have been successfully applied to gene expression data to discover local patterns, in which a subset of genes exhibit similar expression levels over a subset of conditions. However, it is not clear which algorithms are best suited for this task. Many algorithms have ...
متن کاملComparison of Biological Significance of Biclusters of SIMBIC and SIMBIC+ Biclustering Models
Query driven Biclustering Model refers to the problem of extracting biclusters based on a query gene or query condition. The extracted biclusters consist of a set of genes and a subset of conditions that are similar to the query gene or query condition and it includes the query input also. Two approaches applied for biclustering problems are topdown and bottom-up, based on how they tackle the p...
متن کامل